Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy.

Identifieur interne : 000277 ( Main/Exploration ); précédent : 000276; suivant : 000278

Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy.

Auteurs : Shashank Masaldan [Australie] ; Sharnel A S. Clatworthy [Australie] ; Cristina Gamell [Australie] ; Zoe M. Smith [Australie] ; Paul S. Francis [Australie] ; Delphine Denoyer [Australie] ; Peter M. Meggyesy [Australie] ; Sharon La Fontaine [Australie] ; Michael A. Cater [Australie]

Source :

RBID : pubmed:29579719

Descripteurs français

English descriptors

Abstract

Cellular senescence is characterized by irreversible growth arrest incurred through either replicative exhaustion or by pro-oncogenic cellular stressors (radioactivity, oxidative stress, oncogenic activation). The enrichment of senescent cells in tissues with age has been associated with tissue dyshomeostasis and age-related pathologies including cancers, neurodegenerative disorders (e.g. Alzheimer's, Parkinson's, etc.) and metabolic disorders (e.g. diabetes). We identified copper accumulation as being a universal feature of senescent cells [mouse embryonic fibroblasts (MEF), human prostate epithelial cells and human diploid fibroblasts] in vitro. Elevated copper in senescent MEFs was accompanied by elevated levels of high-affinity copper uptake protein 1 (Ctr1), diminished levels of copper-transporting ATPase 1 (Atp7a) (copper export) and enhanced antioxidant defence reflected by elevated levels of glutathione (GSH), superoxide dismutase 1 (SOD1) and glutaredoxin 1 (Grx1). The levels of intracellular copper were further increased in senescent MEFs cultured in copper supplemented medium and in senescent Mottled Brindled (Mobr) MEFs lacking functional Atp7a. Finally, we demonstrated that the restoration/preservation of autophagic-lysosomal degradation in senescent MEFs following rapamycin treatment correlated with attenuation of copper accumulation in these cells despite a further decrease in Atp7a levels. This study for the first time establishes a link between Atp7a and the autophagic-lysosomal pathway, and a requirement for both to effect efficient copper export. Such a connection between cellular autophagy and copper homeostasis is significant, as both have emerged as important facets of age-associated degenerative disease.

DOI: 10.1016/j.redox.2018.03.007
PubMed: 29579719
PubMed Central: PMC5953000


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy.</title>
<author>
<name sortKey="Masaldan, Shashank" sort="Masaldan, Shashank" uniqKey="Masaldan S" first="Shashank" last="Masaldan">Shashank Masaldan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia. Electronic address: shashank.masaldan@florey.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052</wicri:regionArea>
<wicri:noRegion>Victoria 3052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clatworthy, Sharnel A S" sort="Clatworthy, Sharnel A S" uniqKey="Clatworthy S" first="Sharnel A S" last="Clatworthy">Sharnel A S. Clatworthy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125</wicri:regionArea>
<wicri:noRegion>Victoria 3125</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gamell, Cristina" sort="Gamell, Cristina" uniqKey="Gamell C" first="Cristina" last="Gamell">Cristina Gamell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Peter MacCallum Cancer Centre, Melbourne, Victoria 3000</wicri:regionArea>
<wicri:noRegion>Victoria 3000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, Zoe M" sort="Smith, Zoe M" uniqKey="Smith Z" first="Zoe M" last="Smith">Zoe M. Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220</wicri:regionArea>
<wicri:noRegion>Victoria 3220</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Francis, Paul S" sort="Francis, Paul S" uniqKey="Francis P" first="Paul S" last="Francis">Paul S. Francis</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220</wicri:regionArea>
<wicri:noRegion>Victoria 3220</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Denoyer, Delphine" sort="Denoyer, Delphine" uniqKey="Denoyer D" first="Delphine" last="Denoyer">Delphine Denoyer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125</wicri:regionArea>
<wicri:noRegion>Victoria 3125</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meggyesy, Peter M" sort="Meggyesy, Peter M" uniqKey="Meggyesy P" first="Peter M" last="Meggyesy">Peter M. Meggyesy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125</wicri:regionArea>
<wicri:noRegion>Victoria 3125</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fontaine, Sharon La" sort="Fontaine, Sharon La" uniqKey="Fontaine S" first="Sharon La" last="Fontaine">Sharon La Fontaine</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052</wicri:regionArea>
<wicri:noRegion>Victoria 3052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cater, Michael A" sort="Cater, Michael A" uniqKey="Cater M" first="Michael A" last="Cater">Michael A. Cater</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia. Electronic address: mcater@deakin.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria 3010</wicri:regionArea>
<wicri:noRegion>Victoria 3010</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29579719</idno>
<idno type="pmid">29579719</idno>
<idno type="doi">10.1016/j.redox.2018.03.007</idno>
<idno type="pmc">PMC5953000</idno>
<idno type="wicri:Area/Main/Corpus">000253</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000253</idno>
<idno type="wicri:Area/Main/Curation">000253</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000253</idno>
<idno type="wicri:Area/Main/Exploration">000253</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy.</title>
<author>
<name sortKey="Masaldan, Shashank" sort="Masaldan, Shashank" uniqKey="Masaldan S" first="Shashank" last="Masaldan">Shashank Masaldan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia. Electronic address: shashank.masaldan@florey.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052</wicri:regionArea>
<wicri:noRegion>Victoria 3052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clatworthy, Sharnel A S" sort="Clatworthy, Sharnel A S" uniqKey="Clatworthy S" first="Sharnel A S" last="Clatworthy">Sharnel A S. Clatworthy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125</wicri:regionArea>
<wicri:noRegion>Victoria 3125</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gamell, Cristina" sort="Gamell, Cristina" uniqKey="Gamell C" first="Cristina" last="Gamell">Cristina Gamell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Peter MacCallum Cancer Centre, Melbourne, Victoria 3000</wicri:regionArea>
<wicri:noRegion>Victoria 3000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, Zoe M" sort="Smith, Zoe M" uniqKey="Smith Z" first="Zoe M" last="Smith">Zoe M. Smith</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220</wicri:regionArea>
<wicri:noRegion>Victoria 3220</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Francis, Paul S" sort="Francis, Paul S" uniqKey="Francis P" first="Paul S" last="Francis">Paul S. Francis</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220</wicri:regionArea>
<wicri:noRegion>Victoria 3220</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Denoyer, Delphine" sort="Denoyer, Delphine" uniqKey="Denoyer D" first="Delphine" last="Denoyer">Delphine Denoyer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125</wicri:regionArea>
<wicri:noRegion>Victoria 3125</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meggyesy, Peter M" sort="Meggyesy, Peter M" uniqKey="Meggyesy P" first="Peter M" last="Meggyesy">Peter M. Meggyesy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125</wicri:regionArea>
<wicri:noRegion>Victoria 3125</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fontaine, Sharon La" sort="Fontaine, Sharon La" uniqKey="Fontaine S" first="Sharon La" last="Fontaine">Sharon La Fontaine</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052</wicri:regionArea>
<wicri:noRegion>Victoria 3052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cater, Michael A" sort="Cater, Michael A" uniqKey="Cater M" first="Michael A" last="Cater">Michael A. Cater</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia. Electronic address: mcater@deakin.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria 3010</wicri:regionArea>
<wicri:noRegion>Victoria 3010</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="eISSN">2213-2317</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Autophagy (genetics)</term>
<term>Cation Transport Proteins (genetics)</term>
<term>Cellular Senescence (genetics)</term>
<term>Copper (metabolism)</term>
<term>Copper Transporter 1 (MeSH)</term>
<term>Copper-Transporting ATPases (genetics)</term>
<term>Copper-Transporting ATPases (metabolism)</term>
<term>Epithelial Cells (metabolism)</term>
<term>Fibroblasts (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutathione (genetics)</term>
<term>Homeostasis (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Lysosomes (metabolism)</term>
<term>Male (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Prostate (metabolism)</term>
<term>Superoxide Dismutase-1 (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Autophagie (génétique)</term>
<term>Cellules épithéliales (métabolisme)</term>
<term>Cuivre (métabolisme)</term>
<term>Fibroblastes (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutathion (génétique)</term>
<term>Homéostasie (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Lysosomes (métabolisme)</term>
<term>Mâle (MeSH)</term>
<term>Prostate (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Superoxide dismutase-1 (génétique)</term>
<term>Transporteurs de cations (génétique)</term>
<term>Vieillissement de la cellule (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cation Transport Proteins</term>
<term>Copper-Transporting ATPases</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Superoxide Dismutase-1</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Autophagy</term>
<term>Cellular Senescence</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Autophagie</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Superoxide dismutase-1</term>
<term>Transporteurs de cations</term>
<term>Vieillissement de la cellule</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Copper</term>
<term>Copper-Transporting ATPases</term>
<term>Epithelial Cells</term>
<term>Fibroblasts</term>
<term>Lysosomes</term>
<term>Prostate</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules épithéliales</term>
<term>Cuivre</term>
<term>Fibroblastes</term>
<term>Lysosomes</term>
<term>Prostate</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Copper Transporter 1</term>
<term>Homeostasis</term>
<term>Humans</term>
<term>Male</term>
<term>Mice</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Homéostasie</term>
<term>Humains</term>
<term>Mâle</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellular senescence is characterized by irreversible growth arrest incurred through either replicative exhaustion or by pro-oncogenic cellular stressors (radioactivity, oxidative stress, oncogenic activation). The enrichment of senescent cells in tissues with age has been associated with tissue dyshomeostasis and age-related pathologies including cancers, neurodegenerative disorders (e.g. Alzheimer's, Parkinson's, etc.) and metabolic disorders (e.g. diabetes). We identified copper accumulation as being a universal feature of senescent cells [mouse embryonic fibroblasts (MEF), human prostate epithelial cells and human diploid fibroblasts] in vitro. Elevated copper in senescent MEFs was accompanied by elevated levels of high-affinity copper uptake protein 1 (Ctr1), diminished levels of copper-transporting ATPase 1 (Atp7a) (copper export) and enhanced antioxidant defence reflected by elevated levels of glutathione (GSH), superoxide dismutase 1 (SOD1) and glutaredoxin 1 (Grx1). The levels of intracellular copper were further increased in senescent MEFs cultured in copper supplemented medium and in senescent Mottled Brindled (Mo
<sup>br</sup>
) MEFs lacking functional Atp7a. Finally, we demonstrated that the restoration/preservation of autophagic-lysosomal degradation in senescent MEFs following rapamycin treatment correlated with attenuation of copper accumulation in these cells despite a further decrease in Atp7a levels. This study for the first time establishes a link between Atp7a and the autophagic-lysosomal pathway, and a requirement for both to effect efficient copper export. Such a connection between cellular autophagy and copper homeostasis is significant, as both have emerged as important facets of age-associated degenerative disease.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29579719</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2213-2317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<PubDate>
<Year>2018</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy.</ArticleTitle>
<Pagination>
<MedlinePgn>322-331</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S2213-2317(18)30081-8</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2018.03.007</ELocationID>
<Abstract>
<AbstractText>Cellular senescence is characterized by irreversible growth arrest incurred through either replicative exhaustion or by pro-oncogenic cellular stressors (radioactivity, oxidative stress, oncogenic activation). The enrichment of senescent cells in tissues with age has been associated with tissue dyshomeostasis and age-related pathologies including cancers, neurodegenerative disorders (e.g. Alzheimer's, Parkinson's, etc.) and metabolic disorders (e.g. diabetes). We identified copper accumulation as being a universal feature of senescent cells [mouse embryonic fibroblasts (MEF), human prostate epithelial cells and human diploid fibroblasts] in vitro. Elevated copper in senescent MEFs was accompanied by elevated levels of high-affinity copper uptake protein 1 (Ctr1), diminished levels of copper-transporting ATPase 1 (Atp7a) (copper export) and enhanced antioxidant defence reflected by elevated levels of glutathione (GSH), superoxide dismutase 1 (SOD1) and glutaredoxin 1 (Grx1). The levels of intracellular copper were further increased in senescent MEFs cultured in copper supplemented medium and in senescent Mottled Brindled (Mo
<sup>br</sup>
) MEFs lacking functional Atp7a. Finally, we demonstrated that the restoration/preservation of autophagic-lysosomal degradation in senescent MEFs following rapamycin treatment correlated with attenuation of copper accumulation in these cells despite a further decrease in Atp7a levels. This study for the first time establishes a link between Atp7a and the autophagic-lysosomal pathway, and a requirement for both to effect efficient copper export. Such a connection between cellular autophagy and copper homeostasis is significant, as both have emerged as important facets of age-associated degenerative disease.</AbstractText>
<CopyrightInformation>Copyright © 2018. Published by Elsevier B.V.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Masaldan</LastName>
<ForeName>Shashank</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia. Electronic address: shashank.masaldan@florey.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clatworthy</LastName>
<ForeName>Sharnel A S</ForeName>
<Initials>SAS</Initials>
<AffiliationInfo>
<Affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gamell</LastName>
<ForeName>Cristina</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Zoe M</ForeName>
<Initials>ZM</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Francis</LastName>
<ForeName>Paul S</ForeName>
<Initials>PS</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Denoyer</LastName>
<ForeName>Delphine</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meggyesy</LastName>
<ForeName>Peter M</ForeName>
<Initials>PM</Initials>
<AffiliationInfo>
<Affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fontaine</LastName>
<ForeName>Sharon La</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cater</LastName>
<ForeName>Michael A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia. Electronic address: mcater@deakin.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027682">Cation Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000079923">Copper Transporter 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516006">Glrx protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C490079">SLC31A1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D000072105">Superoxide Dismutase-1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 7.2.2.8</RegistryNumber>
<NameOfSubstance UI="D000073840">Copper-Transporting ATPases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027682" MajorTopicYN="N">Cation Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016922" MajorTopicYN="N">Cellular Senescence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000079923" MajorTopicYN="N">Copper Transporter 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073840" MajorTopicYN="N">Copper-Transporting ATPases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004847" MajorTopicYN="N">Epithelial Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005347" MajorTopicYN="N">Fibroblasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011467" MajorTopicYN="N">Prostate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072105" MajorTopicYN="N">Superoxide Dismutase-1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Ageing</Keyword>
<Keyword MajorTopicYN="Y">Autophagy</Keyword>
<Keyword MajorTopicYN="Y">Copper</Keyword>
<Keyword MajorTopicYN="Y">Homeostasis</Keyword>
<Keyword MajorTopicYN="Y">Senescence</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>01</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>03</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29579719</ArticleId>
<ArticleId IdType="pii">S2213-2317(18)30081-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2018.03.007</ArticleId>
<ArticleId IdType="pmc">PMC5953000</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Feb 11;530(7589):184-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26840489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2014 Apr;6(4):793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24522867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 3;287(32):26678-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22648419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Aug 28;454(7208):1142-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18650808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncol Rep. 2013 May;29(5):1805-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Age (Dordr). 2013 Dec;35(6):2255-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23576095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neurobiol. 2000 Dec;62(6):649-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10880854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Mar 7;88(5):593-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9054499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 24;274(52):36952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10601249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 2006 Feb;130(2):493-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16472602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 4;278(14):11731-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12551891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Genet. 1980 Feb;18(1-2):117-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7387619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2014;13(12 ):1840-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24866342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2014 Aug;27(4):661-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24816595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 1997 Jul;6(7):1037-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9215672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2008 Dec 15;80(24):9817-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19072276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(3):e4919</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19305496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Jan 1;21(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2015 Nov;7(11):1459-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26313539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Nov 15;7(22):3601-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19001874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2008 Mar;4(3):176-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18277979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2013 Apr 15;27(8):900-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23599344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2011 Aug;23 (4):532-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21872769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Apr 5;264(10):5598-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2564391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2015 Dec;21(12):1424-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26646499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Analyst. 2011 Jun 21;136(12):2578-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21394377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2017;2017:3793817</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28280523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2001 Feb 15;10(4):361-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 25;286(12):10073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21242307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 1999 Jun;8(6):1069-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10332039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2016 Sep 1;8(9):853-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27339113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Aug 27;285(35):27111-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20566629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6842-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11391005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Dec 4;284(49):33949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19808669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Apr;1793(4):605-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19046998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Jun;23(11):2066-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Feb 3;270(5):2320-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7836465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2015 Jan;125(1):25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25654547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Aug 15;446(1):59-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22651090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2013 Sep;45(9):2087-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23871936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Apr;1762(4):485-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16488577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1963 May;17:299-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13985244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1996 Nov 25;229(1):7-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8940243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2015 Aug;14(4):644-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25754370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2008 May 1;27(20):2801-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18193093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2016 Jan;22(1):78-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26657143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2012 Apr;11(2):345-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22321662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Invest. 2016 Feb;96(2):206-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26367492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2008 Jul;8(7):512-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Nov 21;155(5):1119-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24238961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2009 Jan;16(1):70-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19008921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2014 Jun 23;29(6):686-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24909901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Nov 15;24(22):2463-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1991 Dec;5(12B):2375-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1752433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2018 Apr;14 :100-115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28888202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 Nov-Dec;3(6):542-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Analyst. 2014 May 21;139(10):2416-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24691543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Gastrointest Liver Physiol. 2007 Apr;292(4):G1181-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 2005 Dec;135(12):2762-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16317117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 May 22;509(7501):439-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24848057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Interdiscip Top Gerontol. 2014;39:45-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24862014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Nov 02;479(7372):232-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22048312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Nov 15;15(22):6084-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8947031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2016 Jun 14;7(24):37064-37080</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27175597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2005 Jul;1(2):84-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 1993 Sep;8(9):2457-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8103211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2886-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10694572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2013 Apr 15;304(8):C768-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23426973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 23;169(1):132-147.e16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28340339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jan 20;287(4):2485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22130675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1997 May 9;53(9):1347-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9214696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2017 Jan 2;13(1):99-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27791464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 17;119(6):861-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15607981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2011 Feb 28;25(4):526-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21259361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Age (Dordr). 2012 Aug;34(4):783-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21695420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jun 3;465(7298):645-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463663</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Masaldan, Shashank" sort="Masaldan, Shashank" uniqKey="Masaldan S" first="Shashank" last="Masaldan">Shashank Masaldan</name>
</noRegion>
<name sortKey="Cater, Michael A" sort="Cater, Michael A" uniqKey="Cater M" first="Michael A" last="Cater">Michael A. Cater</name>
<name sortKey="Clatworthy, Sharnel A S" sort="Clatworthy, Sharnel A S" uniqKey="Clatworthy S" first="Sharnel A S" last="Clatworthy">Sharnel A S. Clatworthy</name>
<name sortKey="Denoyer, Delphine" sort="Denoyer, Delphine" uniqKey="Denoyer D" first="Delphine" last="Denoyer">Delphine Denoyer</name>
<name sortKey="Fontaine, Sharon La" sort="Fontaine, Sharon La" uniqKey="Fontaine S" first="Sharon La" last="Fontaine">Sharon La Fontaine</name>
<name sortKey="Francis, Paul S" sort="Francis, Paul S" uniqKey="Francis P" first="Paul S" last="Francis">Paul S. Francis</name>
<name sortKey="Gamell, Cristina" sort="Gamell, Cristina" uniqKey="Gamell C" first="Cristina" last="Gamell">Cristina Gamell</name>
<name sortKey="Meggyesy, Peter M" sort="Meggyesy, Peter M" uniqKey="Meggyesy P" first="Peter M" last="Meggyesy">Peter M. Meggyesy</name>
<name sortKey="Smith, Zoe M" sort="Smith, Zoe M" uniqKey="Smith Z" first="Zoe M" last="Smith">Zoe M. Smith</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000277 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000277 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29579719
   |texte=   Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29579719" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020